The use of cluster analysis to identify factors that influence the establishment of Health Technologies Assessment (HTA) agencies

Yolanda Bravo Vergel, Brian Ferguson and Cynthia Iglesias

Centre for Health Economics, University of York Humber & Yorkshire Observatory of Public Health

iHEA, Barcelona 10-13 July 2005

<u>Aims</u>

- Provide an overview and simplified classification of the HTA organisations present in the OECD.
- To investigate the factors that can influence the setting up of Health Technology Assessment (HTA) agencies across OECD countries.

Background

- Phenomenon emergence HTA organisations early 90s: partially in line with:
 - the growth of specialized agencies Western countries
 - 2nd phase debate priority-setting in health care
- Delegation decision-making powers to arm's-length agencies (Majone 1986,87):
 - making credible policy commitments in controversial / unpopular decisions
 - need for expertise highly complex or technical matters
 - free public administration from partisan politics
- "Responsible for assessment new/existing healthcare technologies as to their effectiveness, appropriateness, and/or cost-effectiveness" (INAHTA).

- OECD Health Database (2004)
- INAHTA database of HTA country profiles
 [35 members, <u>http://www.inahta.org</u>, May 2005].
- Literature review, mainly HiT country profiles by the European Observatory on Health Care Systems and OECD reports.

Framework of variables

- (1) Number HTA agencies
- (2) Public health expenditure (% GDP)
- (3) Public expenditure on pharmaceuticals (% GDP)
- (4) Form of health care decentralisation [Collins's definition (1994)]
- (5) Type of health care system

[Gordon (1988), Saltman et al. (2000, 2001) typologies]

Centre For Health E

(6) Principal shared-rule arrangement in the country (unitary - federal political system)

[Elazar (1994) and Watts (1999) classification]

Table 1. Parameters used in the cluster and discrimant analysis

Country	Agencies	No. INAHTA Agencies	Type of health care system	Decentralisation health care system	Form political decentralisation	Public health expenditure (%GDP)	Public expenditure on pharmaceuticals (%GDP)
Australia	ASERNIP, MSAC	2	SHI	Devolution	Federation	6.2	0.7
Austria	ITA	1	SHI	Devolution	Federation	5.4	0.9
Belgium	KCE	1	SHI	Deconcentration	Fed.arrang.	6.5	0.7
Canada	AETMIS, AHFMR, CCOHTA	3	SHI	Devolution	Federation	6.7	0.6
Czech Rep	-	1	SHI	Deconcentration	Unitary state	6.8	1.3
Denmark	DACEHTA, DSI	2	NHS	Devolution	Fed.arrang.	7.3	0.4
Finland	FinOHTA	1	NHS	Devolution	Fed.arrang.	5.5	0.6
France	HAS(ANAES), CEDIT	2	SHI	Centralised	Fed.arrang.	7.4	1.4
Germany	DAHTA@DIMDI	1	SHI	Devolution	Federation	8.6	1.2
Greece	-	0	NHS	Centralised	Unitary state	5	1
Hungary	HunHTA	1	Mixed	Deconcentration	Unitary state	5.5	1.3
Iceland	-	0	NHS	Deconcentration	Unitary state	8.3	0.8
Ireland	-	0	SHI	Deconcentration	Unitary state	5.5	0.7
Italy	-	0	NHS	Devolution	Fed.arrang.	6.4	1
Japan	-	0	SHI	Deconcentration	Fed.arrang.	6.4	1
Korea	-	0	Mixed	Centralised	Unitary state	3.2	0.7
Luxembourg	-	0	SHI	Centralised	Unitary state	5.3	0.6
México	-	0	Mixed	Deconcentration	Federation	2.8	0.1
Netherlands	CVZ, GR, ZonMW	3	SHI	Deconcentration	Fed.arrang.	5.5	0.6
New Zealand	NZHTA	1	Mixed	Deconcentration	Fed.arrang.	6.6	0.8
Norway	SMM	1	NHS	Devolution	Unitary state	7.4	0.4
Poland	-	0	Mixed	Deconcentration	Unitary state	4.4	0.7
Portugal	-	0	NHS	Deconcentration	Fed.arrang.	6.5	1.3
Slovakia	-	0	SHI	Deconcentration	Unitary state	5.1	1.8
Spain	AETS, AETSA, CAHTA, OSTEBA, UETS	5	NHS	Devolution	Federation	5.4	1.2
Sweden	CMT, SBU	2	NHS	Devolution	Unitary state	7.9	0.8
Switzerland	MTU/SFOPH	1	SHI	Devolution	Federation	6.5	0.8
Turkey	-	0	Mixed	Deconcentration	Unitary state	4.2	1
UK	CRD, IAHS, NCCHTA, NHS QIS, NHSC	5	NHS	Devolution	Fed.arrang.	6.4	0.7
USA	AHRQ, CMS, VATAP	3	Mixed	Devolution	Federation	6.6	0.4

<u>Methods</u>

Techniques of multivariate analysis: appropriate for situations when the random variation in several variables is to be studied simultaneously (Armitage 1971)

Cluster analysis:

- Classifies a set of observations into 2 or more unknown groups (minimize within-group variation, maximize between group variation).
- Groups are nested and represented in 2D dendrogram.
- Hierarchical or K-means?: no prior knowledge number groups and small sample (Everitt et al. 2001)
- Proximity matrix method Euclidean distance Distance (A,B) = $\sqrt{\sum (A_i - B_i)^2}$
- Linkage method: Average distance between groups

Methods

Linear discriminant function analysis:

- Find the linear combination of x's variables (*predicting* variables) which best discriminates among the different categories of the grouping variable (n=>2, defined by the clusters).
- *Fisher's linear function* maximizes the ratio of the between-groups sum of squares (SSq) to the within groups SSq.
- Number of linear function = K-1 (grouping variable).
- F1, or highest latent root gives the coefficients in the linear function that maximizes the ratio of SSq.
- F2 function with the highest ratio of SSq, subject to the condition that is uncorrelated with F1.

Rescaled Distance Cluster Combine

C A S E Label	Num	0	5	10	15	20	25
Laber	num	T					+
Poland	22	0×000003					
Turkey	28		000002				
Korea	16	0000000	\Leftrightarrow				
Ireland	13	000×02	- ①①	00000000	000002		
Luxembourg	17		\Leftrightarrow		\Leftrightarrow	\ /	
Greece	10	00000000	000002		- VVV(HATON .	
Slovakia	24	000002			\Leftrightarrow	⇔	
México	18	00000000	00000000	00000000	000002	\Leftrightarrow	
Norway	21	000×00				\Leftrightarrow	
Sweden	26	000° - 00	00000000			\Leftrightarrow	
Denmark	6	000002		0002		- 11111	000002
Iceland	12	00000000	000000002	口介忍		\Leftrightarrow	\Leftrightarrow
Germany	9	00000000	00000000	VVI∕2 ⇔		\Leftrightarrow	\Leftrightarrow
Australia	1	0002		\Leftrightarrow		\Leftrightarrow	\Leftrightarrow
Switzerland	27	00000000		\Leftrightarrow		\Leftrightarrow	\Leftrightarrow
Austria	2	 ₩	000002	- ÛÛ	00000000000		\Leftrightarrow
Finland	7	0000000	\Leftrightarrow	\Leftrightarrow			\Leftrightarrow
Japan	15	000×02					\Leftrightarrow
Portugal	23	1005 o 10	VVV3 ⇔	$\Leftrightarrow \Leftrightarrow$			\Leftrightarrow
Italy	14	000002	$\Leftrightarrow \Leftrightarrow$	$\Leftrightarrow \Leftrightarrow$			\Leftrightarrow
Belgium	3	000×02	□ ↓	□ \ <u>0</u> 2			\Leftrightarrow
New Zealand	20	1005 o OZ	\Leftrightarrow	\Leftrightarrow			\Leftrightarrow
Czech Rep	5		0.00g	\Leftrightarrow			\Leftrightarrow
Hungary	11	0000000		\Leftrightarrow			\Leftrightarrow
France	8	0000000					\Leftrightarrow
Spain	25	000000 ×					\Leftrightarrow
UK	29	0000000		- ①①	00000000000		
Canada	4	000×0000	0002	\Leftrightarrow		/ \	
USA	30	100g	- 0000	000002			
Netherlands	19	0000000	0002				

Results - cluster analysis

Group 1 (n= 8)

- Countries with no HTA agencies
- Public health expenditure < Average OECD
- Unitary states; centralised / deconcentrated

Group 2 (n=17)

- No. Agencies: 1 to 2 (exception: 4 no agency)
- Public health expenditure > Average OECD
- 50% NHS, 50% SHI
- Heterogeneous (traditional federal countries, Scandinavian...)

Group 3 (n=5)

- High number HTA agencies (>=3)
- Health expenditure average OECD
- All devolved systems (except Netherlands); 3 Federations

STANDARDIZED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTES

	Function		
	1	2	
PUBEXP	.861	.481	
PUBPHARM	.116	.272	
TYPESYST	062	.189	
RULE A RRA NGEMENT	.553	592	
DECSYST	.316	195	

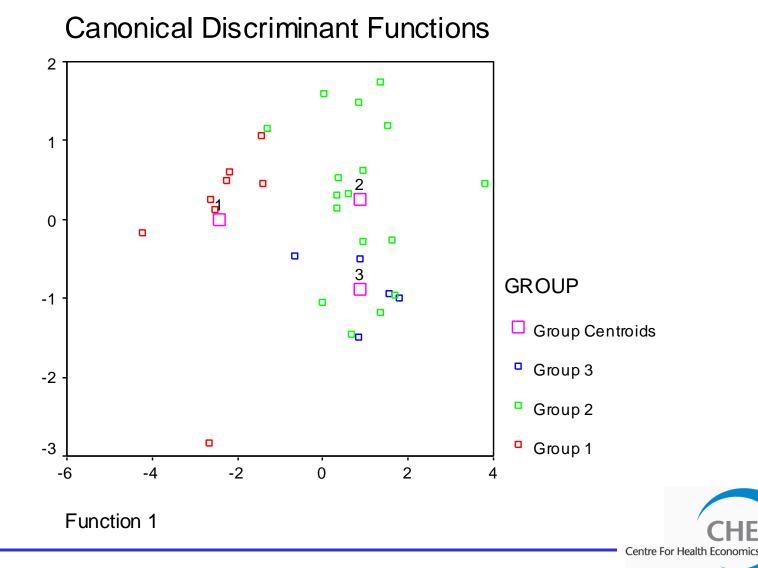
MULTIVARIATE TESTS OF SIGNIFICANCE

Tests of Equality of Group Means

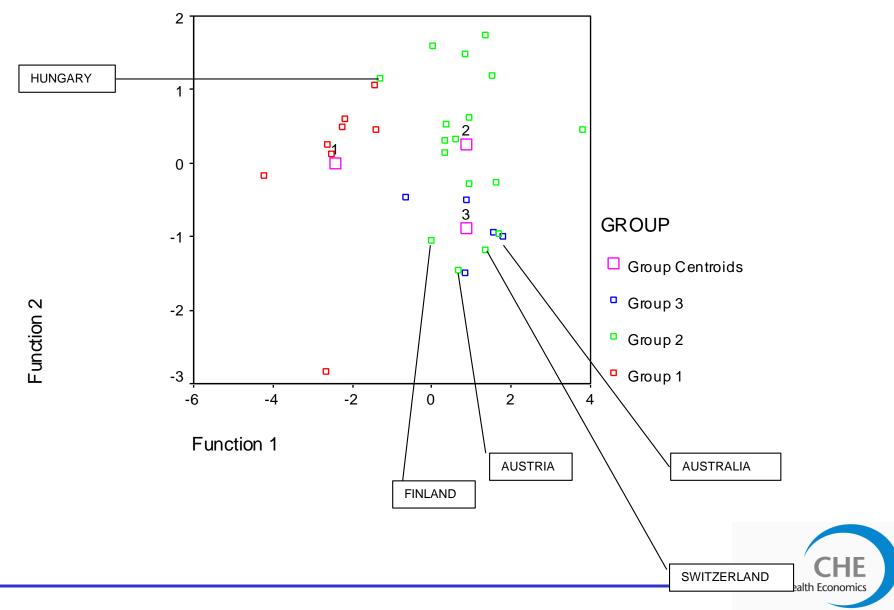
	Wilks' Lambda	F	df1	df2	Sig.
PUBEXP	.430	17.928	2	27	.000
PUBPHARM	.954	.650	2	27	.530
TYPESYST	.851	2.372	2	27	.112
RULE ARRANGEMENT	.701	5.765	2	27	.008
DECSYST	.623	8.166	2	27	.002

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1 through 2	.251	34.551	10	.000
2	.844	4.245	4	.374


PREDICTED GROUP MEMBERSHIP AND MISCLASSIFICATIONS

			Predicted Group Membership			
		GROUP	1	2	3	Total
Original	Count	1	8	0	0	8
		2	1	12	4	17
		3	0	0	5	5
	%	1	100.0	.0	.0	100.0
		2	5.9	70.6	23.5	100.0
		3	.0	.0	100.0	100.0


Classification Results

b. 83.3% of original grouped cases correctly classified.

Canonical Discriminant Functions

Results - discriminant analysis

- Canonical correlation: About 70% variability in the discriminant scores is attributable to between-group differences for F1.
- Canonical coefficients largest contributor is public expenditure, followed by political decentralisation & form of health care decentralisation.
- Degree of prediction of the 5 variables is high: 83% cases correctly classified.
- Scatter plot: F1 divides cases into two basic sections (group 1 on the left; groups 2+3 right).
- Discrimination power linear function 2 is not as good as F1 (blurred area between groups 2 and 3).

Centre For Health Ecor

Conclusions

- Results suggest that a high level of public expenditure in health care and a decentralised decision-making context favour the setting up of HTA organisations.
- % Public expenditure in pharmaceuticals no relevant factor counterintuitive
- 12 /18 countries with HTA agencies have devolved health decision-making authority to regional or local government

- local political accountability

– public awareness financial size problem

Can put pressure on governments to make a move towards explicit rationing

Discussion

- Cluster analysis results always considered with caution (certain degree subjectivity)
- Model provides a certain capacity prediction of future developments in the HTA area.
- This research shows the value of hierarchical cluster analysis in conjunction with discriminant function analysis for the classification of complex cases (See Nixon 2000).
- Normal distributional assumptions for traditional discriminant analysis are not satisfied. However, it is common practice to employ above procedures as a first analysis, since method produce satisfactory results even for scenarios where distributional assumptions cannot be met (Asparoukhov and Krzanowski 2001)

Armitage P. 1971. Statistical Methods in Medical Research. Oxford: Blackwell Scientific Publications.

- Asparoukhov O. and Krzanowski W.J. 2001. A comparison of discriminant procedures for bynary variables. Computational Statistics and Data Analysis 38:139-160.
- Collins Ch. 1994. Management and Organization of Developing Health Systems., Oxford Medical Publications. Oxford: Oxford University Press.
- Elazar D.J. 1994. Federal Systems of the World. A Handbook of Federal, Confederal and Autonomy Arrangements. 2 ed. Essex: Longman Group Limited.
- Everitt B., Landau S., and Leese M. 2001. Cluster Analysis. 4th ed. London: Arnold Publishers.
- Gordon M.S. 1988. Social Security Policies in Industrial Countries. Cambridge: Cambridge University Press.
- Majone G. 1996. Regulating Europe. London: Routledge.
- Majone G. 1997. Independent agencies and the delegation problem. In Political Institutions and Public Policy: Perspectives on European Decision Making, edited by Steunenberg B. and Van Vught F. (Dordrecht: Kluwer Academic Publishers).
- Nixon J. How does the UK NHS compare with European standards? A review of EU health care systems using hierarchical cluster analysis. [182]. 2000b. York, The University of York. CHE Discussion Paper.

Saltman R.B., Busse R., and Figueras J. 2002. Social Health Insurance Countries in Western Europe.

Saltman R.B. and Figueras J. 2001. European Health Care Reform. Analysis of Current Strategies. Copenhagen: European Observatory on Health Care Systems.

Watts R.L. 1999. Comparing Federal Systems. 2 ed. Kingston, Ontario.: McGill-Queen's University Press.

Centre For Health Economic